The Crystal Structure of Lithium Hydroxylammonium Sulphate

By S. Vilminot,* M. R. Anderson and I. D. Brown
Institute for Materials Research McMaster University, Hamilton, Ontario, Canada

(Received 19 June 1973; accepted 20 June 1973)

Abstract

Crystals of lithium hydroxylammonium sulphate, $\mathrm{LiNH}_{3} \mathrm{OHSO}_{4}$, are orthorhombic, space group $P b c a$, with $a=18.461$ (5), $b=7.267$ (3), $c=6.695$ (2) \AA, $Z=8$. Crystals were grown from an aqueous solution of $\left(\mathrm{NH}_{3} \mathrm{OH}\right)_{2} \mathrm{SO}_{4}$ and $\mathrm{Li}_{2} \mathrm{SO}_{4}$. The structure, which was refined to $R=0.034$ from 1574 X-ray reflexions, contains sheets of LiSO_{4} hydrogen-bonded together by the $\mathrm{NH}_{3} \mathrm{OH}$ ions. The Li atom is surrounded by four O atoms at $1.96 \AA$ and S by four O at $1.477 \AA$.

Introduction. Single crystals of $\mathrm{LiNH}_{3} \mathrm{OHSO}_{4}$ were grown by slow evaporation from an aqueous solution * On leave from Laboratoire de Chimie Minérale, E.R.A. 314, Chimie des Matériaux, Faculté des Sciences, Place Eugène Bataillon, 34060 Montpellier, France.

of $\left(\mathrm{NH}_{3} \mathrm{OH}\right)_{2} \mathrm{SO}_{4}$ and $\mathrm{Li}_{2} \mathrm{SO}_{4}$ in stoichiometric quantities. Very thin hexagonal crystals were formed, but recrystallization improved the thickness to a size suitable for X-ray work. The space group was deduced from systematic absences on Weissenberg photographs ard the lattice parameters were measured both for a powder sample and a single crystal; the results, with other crystal data, are given in Table 1. For determination of the structure, a single crystal measuring $0.1 \times 0.1 \times 0.4 \mathrm{~mm}$ was selected. The intensities were measured at room temperature on a Syntex four-circle automatic X-ray diffractometer with Mo $K \alpha$ radiation ($\lambda=0.71069 \AA$) monochromated by reflexion from a graphite crystal. Intensities of 1574 independent reflexions with $\sin \theta / \lambda<0.705$ were measured and cor-

Table 1. Crystallographic data for $\mathrm{LiNH}_{3} \mathrm{OHSO}_{4}$

Crystal systemSpace group				Single crystal Orthorhombic
				Pbca
a	18.460 (8) \AA			18.461 (5) \AA
b	$7 \cdot 280$ (5)			7.267 (3)
c	$6 \cdot 712$ (3)			$6 \cdot 695$ (2)
Z		8		
d_{m}		2.06	10) $\mathrm{g} \mathrm{cm}^{-3}$	
d_{x}		2.02	(3) $\mathrm{g} \mathrm{cm}^{-3}$	
Absorption coefficient	$\begin{aligned} & 5 \cdot 9(\mathrm{Cu} K \alpha) \mathrm{mm}^{-1} \\ & 1.5406 \AA \end{aligned}$			$0 \cdot 63\left(\mathrm{Mo} K \alpha\right.$) mm^{-1}
Wavelength $K \alpha$				$0.71069 \AA$
Systematic absences		0kl	$k=2 n+1$	
		hol	$l=2 n+1$	
		$h k 0$	$h=2 n+1$	

Table 2. Parameters derived from the final least-squares refinement
Estimated standard deviations are in parentheses
The expressions used for the temperature factors are:

				$\left[-2 \pi^{2} U\right.$	$\left.\left(\frac{2 \sin \theta}{\lambda}\right)^{2}\right]$.				
	x	y	z	U or U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Li	$0 \cdot 2612$ (2)	0.2535 (8)	$0 \cdot 4122$ (8)	0.024 (2)	0.021 (2)	0.020 (2)	-0.002 (3)	$0 \cdot 000$ (2)	0.004 (2)
S	0.1559 (1)	0.0520 (1)	$0 \cdot 1577$ (1)	0.0127 (2)	0.0128 (2)	0.0138 (2)	-0.0000 (3)	0.0003 (3)	0.0005 (3)
$\mathrm{O}(1)$	$0 \cdot 3348$ (1)	0.4390 (3)	0.3394 (3)	$0 \cdot 022$ (1)	0.025 (1)	0.021 (1)	-0.004 (1)	-0.002 (1)	0.011 (1)
$\mathrm{O}(2)$	$0 \cdot 3289$ (1)	0.0586 (3)	$0 \cdot 4777$ (3)	0.025 (1)	0.024 (1)	0.018 (1)	$0 \cdot 005$ (1)	0.001 (1)	0.007 (1)
$\mathrm{O}(3)$	$0 \cdot 2076$ (1)	0.2075 (2)	$0 \cdot 1649$ (3)	0.024 (1)	0.020 (1)	0.020 (1)	-0.009 (1)	-0.002 (1)	$0 \cdot 002$ (1)
$\mathrm{O}(4)$	0.0810 (1)	$0 \cdot 1213$ (3)	$0 \cdot 1458$ (4)	0.015 (1)	0.021 (1)	0.029 (1)	0.005 (1)	0.002 (1)	0.002 (1)
$\mathrm{O}(5)$	$0 \cdot 4468$ (1)	$0 \cdot 1444$ (3)	0.0716 (3)	0.034 (1)	0.034 (1)	0.036 (1)	-0.001 (1)	0.001 (1)	0.009 (1)
N	0.4446 (1)	0.0037 (4)	0.2142 (4)	0.031 (1)	0.028 (1)	0.028 (1)	-0.003 (1)	$0 \cdot 006$ (1)	$-0.000(1)$
H(1)	0.404 (2)	0.017 (5)	0.326 (6)	0.011 (9)					
H (2)	0.429 (2)	-0.109 (5)	$0 \cdot 146$ (5)	0.012 (9)					
H(3)	0.493 (2)	0.005 (7)	0.263 (7)	0.025 (11)					
H(4)	$0 \cdot 400$ (3)	0.085 (9)	0.001 (10)	0.087 (20)					

rected for Lorentz and polarization effects but not for absorption, which was negligible ($\mu=0.63 \mathrm{~mm}^{-1}$).

The structure was solved from a Patterson synthesis and the hydrogen atoms found from a difference map. The atomic parameters and temperature factors were refined by the full-matrix least-squares program CRYLSQ of the XRAY 71 program library. With anisotropic temperature factors for all non-hydrogen atoms $R_{1}\left[=\sum\left(\left|F_{o}\right|-\left|F_{c}\right|\right) / \sum\left|F_{o}\right|\right]$ was 0.034 . The final $R_{2}\left[=\left(\sum \omega\left(| | F_{o}\left|-\left|F_{c}\right|\right|^{2} / \sum \omega\left|F_{o}\right|^{2}\right)^{1 / 2}\right]\right.$ was $0 \cdot 027$, where $\omega=\left(0 \cdot 1146-0.0044\left|F_{o}\right|+0.00004\left|F_{o}\right|^{2}\right)^{-1}$. Final atomic

Fig. 1. Structure of $\mathrm{LiNH}_{3} \mathrm{OHSO}_{4}$ projected down a.

Fig. 2. Structure of $\mathrm{LiNH}_{3} \mathrm{OHSO}_{4}$ projected down \mathbf{c}.
positions and temperature factors are given in Table 2.*

Description of the structure. The bond lengths and bond angles are given in Table 3.

Crystals of $\mathrm{LiNH}_{3} \mathrm{OHSO}_{4}$ are composed of sheets of LiSO_{4} which are held together by hydrogen bonds from the hydroxylammonium ions. This structure is quite different from the stuffed tetrahedral framework structures of the isoelectronic $\mathrm{Li}\left(\mathrm{N}_{2} \mathrm{H}_{5}\right) \mathrm{SO}_{4}$ (Brown, 1964) and $\mathrm{Li}\left(\mathrm{N}_{2} \mathrm{H}_{5}\right) \mathrm{BeF}_{4}$ (Anderson, Brown \& Vilminot, 1973) or the other compounds of the form LiMSO_{4} and $\mathrm{LiMBeF}_{4}\left(\mathrm{M}=\mathrm{K}, \mathrm{Rb}, \mathrm{Cs}, \mathrm{NH}_{4}\right)$ discussed by Chung \& Hahn (1972).

Table 3. Bond distances and angles

SO_{4} tetrahedron

S-O(1)	1.478 (2) \AA
S-O(2)	1.476 (2)
$\mathrm{S}-\mathrm{O}(3)$	1.480 (2)
S-O(4)	1.473 (2)
$\mathrm{O}(1)-\mathrm{S}-\mathrm{O}(2)$	$110 \cdot 3(1)^{\circ}$
$\mathrm{O}(1)-\mathrm{S}-\mathrm{O}(3)$	108.8 (1)
$\mathrm{O}(1)-\mathrm{S}-\mathrm{O}(4)$	$110 \cdot 1$ (1)
$\mathrm{O}(2)-\mathrm{S}-\mathrm{O}(3)$	108.6 (1)
$\mathrm{O}(2)-\mathrm{S}-\mathrm{O}(4)$	108.7 (1)
$\mathrm{O}(3)-\mathrm{S}-\mathrm{O}(4)$	$110 \cdot 2$ (1)
LiO_{4} tetrahedron	
Li-O(1)	1.975 (5) \AA
$\mathrm{Li}-\mathrm{O}(2)$	1.939 (6)
Li-O(3)	1.957 (5)
$\mathrm{Li}-\mathrm{O}\left(3^{\prime}\right)$	$1 \cdot 981$ (5)
$\mathrm{O}(1)-\mathrm{Li}-\mathrm{O}(2)$	96.4 (2) ${ }^{\circ}$
$\mathrm{O}(1)-\mathrm{Li}-\mathrm{O}(3)$	$104 \cdot 8$ (3)
$\mathrm{O}(1)-\mathrm{Li}-\mathrm{O}\left(3^{\prime}\right)$	117.2 (3)
$\mathrm{O}(2)-\mathrm{Li}-\mathrm{O}(3)$	$113 \cdot 1$ (3)
$\mathrm{O}(2)-\mathrm{Li}-\mathrm{O}\left(3^{\prime}\right)$	$103 \cdot 5$ (3)
$\mathrm{O}(3)-\mathrm{Li}-\mathrm{O}\left(3^{\prime}\right)$	119.7 (2)
$\mathrm{NH}_{3} \mathrm{OH}$ ion	
$\mathrm{N}-\mathrm{O}(5)$	1.400 (4) Å
$\mathrm{N}-\mathrm{H}(1)$	1.06 (3)
$\mathrm{N}-\mathrm{H}(2)$	$0 \cdot 98$ (4)
$\mathrm{N}-\mathrm{H}(3)$	$0 \cdot 96$ (4)
$\mathrm{O}(5)-\mathrm{H}(4)$	1.08 (6)
$\mathrm{H}(1)-\mathrm{N}-\mathrm{H}(2)$	102 (3) ${ }^{\circ}$
$\mathrm{H}(1)-\mathrm{N}-\mathrm{H}(3)$	115 (3)
$\mathrm{H}(1)-\mathrm{N}-\mathrm{O}(5)$	116 (2)
$\mathrm{H}(2)-\mathrm{N}-\mathrm{H}(3)$	116 (3)
$\mathrm{H}(2)-\mathrm{N}-\mathrm{O}(5)$	107 (2)
$\mathrm{H}(3)-\mathrm{N}-\mathrm{O}(5)$	101 (3)
$\mathrm{H}(4)-\mathrm{O}(5)-\mathrm{N}$	89 (3)

Views of the structure projected along a and \mathbf{c} are shown in Figs. 1 and 2. The sulphur and lithium atoms are at the centre of oxygen tetrahedra which share corners to form the LiSO_{4} sheets perpendicular to [100].

Two hydrogen atoms of the $-\mathrm{NH}_{3}$ group and the

[^0]Table 4. Hydrogen-bond lengths and angles of the $\mathrm{NH}_{3} \mathrm{OH}$ ion

	D-H. ${ }^{\text {A }}$		$\underset{(\AA)}{\mathrm{D}-\mathrm{H}}$	$\underset{(\AA)}{H \cdots A}$	D-A (\AA)	$\underset{\left({ }^{\circ}\right)}{\mathrm{D}-\mathrm{H} \cdot \mathrm{~A}}$
N	H(1)	$\mathrm{O}(2)$		$\{1.75$ (3)	2.799 (3)	170 (3)
N	H(1)	$\mathrm{O}(4)$		$\{2.38$ (4)	3.066 (4)	121 (2)
N	H(2)	$\mathrm{O}(4)$	0.98 (4)	1.97 (4)	$2 \cdot 856$ (3)	149 (3)
N	H(3)	$\mathrm{O}(4)$	0.96 (4)	1.93 (4)	$2 \cdot 820$ (3)	155 (4)
O(5)	H(4)	$\mathrm{O}(1)$	1.08 (6)	$1 \cdot 62$ (6)	$2 \cdot 656$ (3)	158 (6)

Table 5. Bond strengths in $\mathrm{LiNH}_{3} \mathrm{OHSO}_{4}$: bond strengths in valence units and bond lengths in \AA (in parentheses) for bonds between O and Li, S and H
Bond strengths (s) are calculated from the expression $s=\left(R / R_{0}\right)^{-N}$ where R is the bond length:

		$\begin{aligned} & R_{0} \\ & N \end{aligned}$	$\begin{aligned} & \mathrm{H}-\mathrm{O} \\ & 0.86^{*} \\ & 2 \cdot 17^{*} \end{aligned}$					
	Li	S		H(1)	H(3)	H(3)	H(4)	Sums around anion
O(1)	$\begin{aligned} & 0.23 \\ & (1.975) \end{aligned}$	$\begin{aligned} & 1.49 \\ & (1.478) \end{aligned}$					$\underset{(1 \cdot 62)}{0 \cdot 25^{*}}$	1.97
$\mathrm{O}(2)$	$\begin{gathered} 0.25 \\ (1.939) \end{gathered}$	$\begin{gathered} 1.50 \\ (1.476) \end{gathered}$		$\stackrel{0.21^{*}}{(1.75)}$				1.96
O(3)	$\begin{array}{cc} 0.24 & 0.23 \\ (1.957) & (1.981) \end{array}$	$\begin{gathered} 1.48 \\ (1.480) \end{gathered}$						1.95
O(4)		$\begin{gathered} 1.51 \\ (1.473) \end{gathered}$		$\underset{(2 \cdot 38)}{0 \cdot 11^{*}}$	$\underset{(1 \cdot 97)}{0 \cdot 17^{*}}$	$\begin{gathered} 0 \cdot 17 * \\ (1 \cdot 93) \end{gathered}$		1.96
Sums around cations	0.95	(198)						

* The parameters for H apply to bonds determined by neutron diffraction and will tend to underestimate the bond strength in this case.
hydrogen atom of the -OH group form hydrogen bonds with oxygen atoms of the nearest sheet. The remaining hydrogen atom of the $-\mathrm{NH}_{3}$ group, $\mathrm{H}(3)$, forms a hydrogen bond to $\mathrm{O}(4)$ of the opposite sheet. Details of the hydrogen bonds are given in Table 4.

The correctness of this structure is confirmed by the bond strength calculation (Brown \& Shannon, 1973) given in Table 5. Each oxygen atom of the sheet forms one strong bond (1.5 valence units) with a sulphur atom. The equivalence of the $\mathrm{Li}-\mathrm{O}$ and $\mathrm{H} \cdots \mathrm{O}$ bonds in terms of their strengths is seen in the way $O(1)$ and $\mathrm{O}(2)$ complete a threefold coordination by forming one bond to each Li and H while $\mathrm{O}(3)$ forms two bonds to Li and $\mathrm{O}(4)$ accepts three rather weak hydrogen bonds. The r.m.s. deviation of the sums of the bond strengths from the valence is 0.04 valence units.

We thank Drs Maurin and Cot for suggesting the problem and for discussions, the National Research Council of Canada for a research grant, and one of us (S.V.) thanks the Centre National de la Recherche Scientifique for financial support.

References

Anderson, M. R. (1973). Ph.D. Thesis, McMaster University, Hamilton, Ontario, Canada.
Anderson, M. R., Brown, I. D. \& Vilminot, S. (1973). Acta Cryst. B29, 2625-2627.
Brown, I. D. (1964). Acta Cryst. 17, 654-660.
Brown, I. D. \& Shannon, R. (1973). Acta Cryst. A 29, 266-282.
Chung, S. J. \& Hahn, T. (1972). Mat. Res. Bull. 7, 12091217.

[^0]: * A list of observed and calculated structure factors is given by Anderson (1973), and has also been deposited with the National Lending Library, England, as Supplementary Publication No. SUP 30162 (9 pp.). Copies may be obtained through the Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH 1 1NZ, England.

